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ABSTRACT 
 
Discrete-event simulation (DES) models and discrete 
mathematical-programming optimization (DMPO) models 
are often used together in a variety of ways. This paper 
discusses the issues that modelers must address when using 
DES models to test the performance of DMPO models in a 
stochastic environment. The issues arise during validation of 
the simulation models – comparing the simulation results 
under deterministic conditions with results from deterministic 
optimization models. In our case, the issues are derived from 
validating simulation models that are used to test the 
performance of scheduling and resource allocation models 
(integer and mixed-integer programming optimization 
models) under various types of uncertainty. The models are 
from our work in crossdocking operations; however, we 
believe they are relevant to a wide variety of problem 
domains. In addition to describing the issues, we offer 
suggestions on how modelers might address the concerns. 
 
INTRODUCTION 
 
Modelers often employ both simulation and optimization 
models, combined or related in various ways, to address a 
particular problem. This paper identifies four relationships 
between simulation and optimization models that allow the 
two disparate modeling types to be combined to address a 
specific problem. These relationships, as illustrated in Figure 
1, are defined as to whether they are recursive or not and as 
to which model type utilizes (or is supported by) the other. 
 
The relationship in Panel (a) of Figure 1 is recursive with a 
simulation model utilizing an optimization model. An 
optimal decision is made within a simulation model and thus 
optimization supports simulation.  For instance, Clausen et 
al. (2012) simulate the operations within a logistic network 
using optimization (multi-stage mixed-integer program, 
solved with a modified tabu search) to make decisions 
regarding the routing between the different terminals. In 
order to realize this relationship, the optimization is typically 
embedded within the simulation model. 
 

Panel (b) of Figure 1 also illustrates a relationship where a 
simulation model utilizes an optimization model, but the 
relationship is non-recursive. In this case, a simulation model 
is used to test the results of an optimization model, e.g., a 
schedule. Wang and Regan (2008) propose two time-based 
algorithms for the inbound truck scheduling problem in a 
crossdock, evaluated with a detailed simulation model. Liu 
and Takakuwa (2010) test the inbound truck schedule and the 
employees’ schedule in a fresh-food crossdock operation 
using a simulation model. Deshpande et al. (2007) use 
discrete-event simulation to evaluate the performances of 
various heuristics for the problem of assigning trucks to the 
different doors of a crossdocking platform. 
 
The relationship in Panel (c) of Figure 1 is recursive with an 
optimization model utilizing a simulation model. In this case, 
a simulation model is typically embedded within an 
optimization model and the simulation is used to evaluate the 
objective function associated with a solution obtained from 
the optimization model. Olafsson and Kim (2002) provide 
tutorials for this technique, which they refer to as “simulation 
optimization.” Greenwood et al. (2005) describe embedding 
simulation and optimization models in a decision support 
system to improve shipbuilding operations. In the logistics 
field, Aickelin and Adewunmi (2006) use simulation as a 
black box to evaluate the objective function within a meta-
heuristic for the cross dock truck-to-door assignment 
problem. In a different approach, Almeder and al. (2009) 
translate the solution of the optimization model into decision 
rules for the discrete-event simulation, and apply the 
procedure iteratively until a stable point is reached. 

Figure 1: Complementary uses of simulation and 
optimization models 
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Figure 3: Case 2 – Links between DMPO and DES models 

 In Panel (d) of Figure 1,  the relationship is non-recursive : 
simulation models generate data that are then used in an 
optimization model. For example, to address a personnel 
planning problem at a crossdocking center, Liu and 
Takakuwa (2009) use a simulation model to determine the 
workload needed. These data are inputs for an integer 
programming model which produces an optimal schedule for 
the operators, taking their skills into account. In another 
example, Hauser (2002) uses a simulation model to provide 
data on alternative layouts in a manufacturing plant.  
 
The focus of this paper is on the non-recursive relationship 
where a simulation model utilizes an optimization model, as 
illustrated in Panel (b) of Figure 1. Based on our experience 
with developing and testing simulation and optimization 
models that interact in this manner, we detail and explain the 
modeling issues raised by such a relationship. We explain 
how those issues can be solved or circumvented. The goal is 
to provide the modeling community with useful insights on 
this application of simulation and optimization and to 
encourage and further enable the use of discrete-event 
simulation models as a means to assess the performance of 
optimization models.  
 
Discrete mathematical programming optimization (DMPO) 
models can represent systems in a very realistic way, taking 
into account as many details as the simulation does; however, 
adding too many details makes the solution non-computable. 
Assumptions are often made in order to simplify the 
optimization model and focus on the most salient aspects. A 
discrete-event simulation (DES) model can be used to 
validate those assumptions and to determine their validity 
range. On the other hand, some simplifications can be made 
in the DES model in order to closely follow the assumptions 
made in the DMPO model. This is important in order to 
validate those assumptions.  
 
To validate a model is to determine whether or not it is a 
meaningful and “accurate” representation of the real system, 
and contains sufficient accuracy to meet its intended use. It is 
about “building the right model.” Verification is the process 
of determining whether a model is working as intended. It is 
about “building the model right.” 
 
In order to validate and verify the DES model, one expects it 
to behave similar to the DMPO model under deterministic 
conditions. In a second step, the DES model will be used 
under realistic, stochastic conditions in order to assess the 
performance and robustness of the DMPO schedules. This 

paper describes how, due to differences in the modeling 
approaches, disparities can occur even in the first step 
(validation and verification), when the models are developed 
to represent the same system in the same operating 
environment. The examples on which our observations are 
based come from the logistics domain (crossdocking 
operations), but we believe they can be relevant to a wide 
variety of problem domains. In addition to describing the 
issues, we offer suggestions on how modelers might address 
and solve them. Therefore, this article seeks to help modelers 
in the use of discrete-event simulation to assess the 
performance of mathematical optimization models. 
 
BASES FOR IDENTIFYING MODELING ISSUES 
 
The modeling issues defined in this paper are the result of 
testing, using discrete-event simulation, two optimization 
models for robustness under operational conditions that 
differ from those explicitly considered in the mathematical 
formulation, e.g., operating in a stochastic environment.  
 
In the first case (referred later as “Case 1”), test schedules 
are obtained using the DMPO program described in Ladier 
and Alpan (2014). A schedule is generated for inbound and 
outbound trucks to a crossdocking facility that maximizes 
transportation providers' satisfaction (in terms of the 
closeness to their desired arrival and departure times) and 
minimizes total quantity of items placed in temporary storage 
(rather than being directly loaded onto an outbound truck). 
The obtained schedule gives the exact arrival and departure 
time of the inbound and outbound trucks, as well as the 
detailed pallet moves inside the platform. A key assumption 
in the optimization model is that unloading, scanning, 
transfer, loading and departure operations can all be done 
within the same time period (e.g., 60 minutes) if the inbound 
truck and the outbound trucks are both present. That is, the 
time period is long enough to ensure pallets can be 
transferred to storage, or to their outbound truck, in masked 
time. The transfer capacity inside the platform (i.e., the 
quantity of pallets that can be moved at each time period) is 
limited. Also, the distance of the transfer (thus the location of 
the doors) is not taken into account. We refer the interested 
reader to Ladier and Alpan (2014) for more details about the 
DMPO model and assumptions. 
 
A DES model is used to test the schedules’ robustness when 
subjected to various levels of randomness, e.g., early or late 
truck arrivals (modeled with exponential distributions), 
variations in process times (unloading and transfer, modeled 
using triangular distributions). Figure 2 shows a simplified 
flow diagram of the DES model. The diagram identifies the 

Figure 2: Case 1 − DES flow diagram, links with the DMPO model 
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sources of information from the DMPO model that are used 
by the DES and the sources of variability which provide the 
stochastic environment for the test. 
 
Case 2 takes place in the same platform, but the focus in on 
the employees rather than the trucks. The truck schedule and 
truck door assignments are inputs of the problem. Test 
schedules are generated using the DMPO model described in 
Ladier et al. (2013), which uses three mixed-integer linear 
programs solved in sequence. The sequential solution 
processes results in detailed timetables (with 15-minute 
precision) for the employees of the logistics facility. The task 
assignments have to cover all of the workload for one day, 
while taking into account the employees’ competencies by 
assigning each of them to tasks for which they are most 
proficient. More details on the assumptions and the solution 
methods can be found in Ladier et al. (2013).   
 
A DES model is used to test the robustness of the timetables 
generated by the DMPO, when subjected to randomness in 
the amount of workload. In this DES model, the workers are 
therefore explicitly represented, with their own capacities 
and their respective competencies. Figure 3 shows the links 
between the DMPO and the DES model in Case 2. 
 
Both simulation models were developed using the simulation 
software FlexSim© (www.flexsim.com). Although both 
models address crossdocking scheduling problems, we 
believe that the issues raised in the next sections are not 
unique to logistics or crossdocking, and can be encountered 
in other modelers application domains. 
 
FOUNDATIONAL DIFFERENCES 
 
The first set of dissimilarities between DMPO and DES 
models include foundational differences in the ways the two 
modeling approaches represent the underlying system. These 
differences are described in terms of time representation, 
spatial representation, model structure, and model size. 
 
Time representation 
 
How the passage of time is represented in models constitutes 
a major difference between DMPO and DES. Temporal 
DMPO uses discrete time intervals where events and 
resulting activities occur within a time period. For example, 
within a one-hour time interval a truck arrives for unloading 
or a task is assigned to, and completed by, an employee. All 
that is considered is that these events/activities occur 
somewhere within the interval; the exact time is not 
important to the model. However, DES has a much finer 
granularity, events occur at precise instances of time; e.g., a 
truck arrives 27.1752 minutes after the arrival of the previous 
truck. Also, in simulation, events trigger, and are triggered 
by, other events; therefore, timing is an important element.  
 
Because of these key differences, the behavior of a DMPO 
model using discrete time intervals and the behavior of a 
DES model will rarely be matched exactly. In Case 1, the 
DMPO model only allows a truck to leave at a multiple of 
the time interval considered, e.g. 60 minutes, while the trucks 

in the DES model leave when a specified condition is met, 
e.g., when a truck is empty (inbound) or full (outbound). 
Therefore, if we compare the truck departure times as 
calculated by the DMPO model and as observed in the DES 
model, we incur time differences as large as 59 minutes even 
though both models behave as expected. Those differences 
can be reduced by shortening the time intervals used in the 
optimization model; however, that makes the optimization 
model more complex (and possibly incomputable) and some 
differences will always be observed. One way to circumvent 
this issue is to measure performance in terms of intervals. For 
example, assuming the masked time is 60 minutes in the 
optimization model, then if a departure is planned at 17:00 in 
the optimization model and if the truck departs at 17:11 in 
the simulation model, then the truck departure is considered 
“on time” and there is no difference in the model results. 
 
Modelers should therefore be aware of the differences in 
granularity of the modeling approaches and they can 
circumvent this issue by using time intervals rather than 
absolute time for their simulation measures. 
 
Spatial representation 
 
DES models not only consider events in time, they often 
consider spatial relationships among modeling elements and 
the effects these relationships have on system behavior and 
performance. Most simulation software integrate and enable 
the use of locational data to determine activity times; e.g., 
each travel time in a DES model may be based on the current 
location of a transporting resource, its destination(s), speeds 
and possibly acceleration, etc. This granularity is not always 
considered in optimization formulations. 
 
DMPO models can take into account speed and acceleration 
– but this adds considerably to model complexity. Therefore, 
there is a tradeoff between fidelity in the optimization model 
(zero travel times) and closeness to realistic operations. As a 
result, spatial effects are taken into account in DMPO models 
only if they significantly impact the key performance 
measures that are used in decision making. For example, the 
selection of an alternative may be heavily influenced by the 
distance walked by employees in a crossdock facility. If 
spatial considerations are not at the core of the problem, then 
mathematical programming modelers tend to ignore travel 
time or use masked time in order to simplify the optimization 
models. An action time that is “short enough” can be 
considered as instantaneous, i.e., performed within the 
formulated time interval (Case 1).  
 
The difference that DES models typically consider the spatial 
aspects of systems being modeled, and DMPO formulations 
do not, causes cross-model validation challenges. To mitigate 
this issue we propose a compromise approach: control the 
transfer time by making it a process step in the simulation 
that does not consider distances and speeds. This easily 
permits setting the transfer time to zero so that it can be 
compared to the mathematical programming model, yet 
enables an easy extension to the simulation model in order to 
incorporate more realistic aspects, such as probability 
distributions and location/speed considerations. 
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Model structure and size 
 
Model complexity is often defined by the model structure 
and its size. DES models and DMPO models define model 
structure and size quite differently.  
 
In DMPO, size is not of special concern in formulating or 
describing a model since the constraints are specified in a 
tight mathematical notation and input parameters are 
provided in a structured manner. However, the size or 
theoretical complexity of the problem drives the choice of 
solution method, and therefore the solution accuracy and 
speed. Optimal solutions may be found, but if the problem is 
NP-hard, execution time increases exponentially with the 
problem size. On the other hand, heuristics do not guarantee 
optimality, thus affect accuracy, but can be easily scaled and 
provide solutions for big data sets.  
 
In DES, model size is defined only partially in terms of the 
number of objects considered (number of processor units, 
number of workers, etc.). The model structure considers the 
types of objects used and, more importantly, the number and 
type of relationships among the objects. Size, and thus 
complexity, is heavily dependent upon structure and in 
particular the number and type of relationships. Even if a 
DES model has been designed to be easily scalable, the 
relationships among objects makes scalability in most cases a 
significant challenge − it is necessary to change the structure 
in order to change the size. In contrast to the DMPO models, 
the complexity of a DES model does not affect the choice of 
solution method and only slightly impacts solution speed (the 
model run time increases linearly with the problem size).  
 
Typically, models are verified, at least initially, using small 
size and structure, typically few objects, few time periods, or 
both. However, it may be necessary to test models in larger 
contexts. For example, Case 1 was validated for a crossdock 
facility model with 3-input doors and 3-output doors, but a 
realistic case would be a 50-input doors by 50-output doors 
arrangement. Since it may be difficult to scale up the 
structure of simulation models, and since changing the 
optimization solution method requires considerable research 
and development, it is important to specify the size early on 
in the project. 
 
OPERATIONAL DIFFERENCES  
 
The second set of dissimilarities between DMPO and DES 
include operational differences in modeling the underlying 
system. These differences are described in terms of task 
dependencies, resource assignment and process logic. 
 
Task dependencies 
 
Precedence relationships are used to define the order in 
which tasks occur. For DMPO models, if the order is not a 
key consideration, it will typically not be included in the 
model for the sake of simplification and computation time. In 
that case only the number of tasks happening in a time 
interval will be considered; the order, the batch size, and the 
parallelism of the tasks are not taken into account.  

However, in DES modeling, processing order is inherent: 
typically, unless explicitly specified, tasks are executed in 
first in, first out order. This fundamental difference can lead 
to discrepancies between the models during validation. For 
example, consider a single-channel process (c = 1) working 
at a rate r and a multi-channel process with c channels and 
rate r / c  per channel. The output from the two options 
appear to be the same – they are on the average, but may 
not be true within a time interval. We use the pallet 
transfer process from Case 1 as an illustration. Assume 
the transfer rate per resource is r = 10 pallets/hour and the 
number of available resources is c = 3. If an outbound 
truck arrives at 10:00, then any pallet transferred from 
inbound before that time goes to storage, while any pallet 
processed after 10:00 goes directly into the outbound 
truck. A process with capacity c = 1 and rate per channel 
of  r = 30 pallets/hour transfers each pallet in 2 minutes. 
Therefore, between 9:55 and 10:00, two pallets are processed 
and they both go into storage. However, a process with 
capacity c = 3 and rate per channel of r = 10 pallets/hour 
transfers each pallet in 6 minutes. Therefore, between 9:55 
and 10:00, no pallet is fully transferred and no pallet goes 
into storage.  
 
Modelers need to be aware of how basic processing order, 
batch size and precedence relationships are handled in each 
type of model. Typically, this is implicit in DES models and 
explicit, and often ignored, in DMPO models. 
 
Resource assignment 
 
The basic manner in which resources are selected for use 
may differ between DMPO models and DES models, thus 
leading to discrepancies in results and validation challenges. 
A common application of mathematical programming models 
is to make assignments between resources and tasks, as in 
our Case 2. When DES is used to test the implementation of 
an assignment, the default simulation logic may not result in 
comparable results. For example, in a simulation if a task 
needs to be performed by a resource and several resources 
are available, a default first-in, first-out criteria may not 
match the optimized assignment. Therefore, information on 
the DMPO assignments must be provided to the DES model 
so that the task can select the appropriate resource. In 
addition, if none of the available resources result in a match 
with the optimized assignment, then logic must be provided 
in the DES model in order to guide the task’s selection from 
the available resources; or, the task must wait until the 
appropriate resource is available. 
 
Similarly, in a DES model if a resource becomes available 
and there are multiple tasks that need to be completed, a 
default first-in, first-out criteria may not match the optimized 
assignment. Therefore, as indicated above, information on 
the DMPO assignments must be provided to the simulation 
so the resource can select the appropriate task. In addition, if 
none of the tasks result in a match with the optimized 
assignment, then logic must be provided in the DES model in 
order to guide the resource’s selection of the available task; 
or, the resource must be made idle and wait until an 
appropriate task becomes available. 
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In short, modelers need to address ways to incorporate 
DMPO results into DES models, typically by modifying 
default resource assignment logic inherent in the simulation. 
 
Process logic 
 
By its nature, DES is greedy, i.e., it processes all items 
(pallets in our cases) that are scheduled in an event (instance 
in time), while DMPO models can transfer less pallets per 
time period if it improves the objective function in the 
optimization. In our Case 1, in order to force the simulation 
model to obtain a result similar to the optimization model, 
the amount of pallets that can flow through the model during 
each time period needs to be limited. This can be 
accomplished by directly using the output of the DMPO 
model as input to the DES, i.e., the capacity of the transfer 
process in the simulation model. Of course, this capacity will 
need to vary over time. It is interesting to note that this 
adjustment may make the simulation closer to reality. 
Therefore, the process logic issue can be mitigated by adding 
logic to the simulation model that provides flexible capacity 
over time to the activity.  
 
Since DES is event-driven, priorities are often required in 
order to represent the appropriate behavior. For example, if 
both an inbound truck needs to be unloaded and an outbound 
truck needs to be loaded, which should an available resource 
service first? In Case 1 and Case 2 we include process logic 
in the DES model to push items from inbound trucks and pull 
resources from the arriving outbound truck. The pulling 
algorithm gives the priority to the outbound trucks; thus, we 
first seek to fill the outbound trucks that have to leave rather 
than emptying the inbound trucks. This logic is similar to 
what a manager would do. However, it may not agree with 
the optimal solution given by the DMPO model in all cases.  
Therefore, it is important to note that, when testing a DMPO 
model with a DES model, the former gives the optimal 
solution (when exact solution methods are used) while the 
latter does not. While the simulation can be driven towards a 
solution closer to the optimal, it cannot determine the optimal 
solution unless it embeds an optimization module (this is the 
case (a) in Figure 1, and beyond the scope of this paper). 
Using the optimal solution determined by the DMPO model 
as an input in the DES model is a good approach, but the 
simulation model needs to include decision logic for 
handling changes due to stochastic events. 
 
CONCLUSIONS 
 
DES and DMPO modeling take very different approaches to 
address operations problems. Of course this is due to 
fundamental differences in the way the two types of models 
are structured and solved. Even though quite different, 
simulation and optimization are often used in complementary 
roles to improve the decisions that result from using the 
models. These inherent differences provide challenges to 
modelers, especially in validation and verification.  

This paper is based on the cases of two simulation models 
that are used to evaluate the performance of DMPO models 
(integer programming, mixed integer linear programming) in 
a stochastic environment. Those application cases model 
crossdocking problems, but the issues we point out can occur 
regardless of the application field. We describe several key 
challenges occurring when the simulation models have to be 
validated, i.e., when the behavior of the simulation model 
and the optimization model are compared under deterministic 
conditions. We offer suggestions for mitigating those 
challenges.  
 
We hope that the insights given on these issues can and will 
encourage an increase in the use of DES to assess the 
performance of DMPO models. We also hope that other 
modelers encountering various modeling issues will be 
encouraged to communicate them so that the community can 
benefit from their experience. 
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